
GitHub Workflow
BasicsG

it
H

u
b

 W
or

kf
lo

w
 B

as
ic

s

Presentation by Daniel Perez
Graduate Fellow
Murty Sunak Quantitative Computing Lab

Requirements

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

2

Ø GitHub desktop installed
Ø Account and Logged into GitHub
Ø Create a working directory in your computer

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

3

• Learn basic concepts of version control systems
• Learn how to setup a git repository and organization
• Learn how to setup a project and prepare to contribute to it by cloning

and branching
• Learn how to create and assign issues
• Learn about pull requests and code review

101

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

4

Why do we use a Version Control System (VCS)?
• Keep a complete change history of every file; the change history contains essential information such as

which change was made, who made the change, when the change happened, and why the change was
made.

• Let people work together independently at the same time
• Make project management easier (traceability, reversibility, backup)

Version Control System:
Software tool that helps in recording changes made to files by keeping a track of modifications done in the
code.

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

5

Types of VCS
•Local Version Control Systems
•Centralized Version Control Systems
•Distributed Version Control Systems

REPOSITORY

WORKING
CLONE

Server

WORKING
CLONE

WORKING
CLONE

Update/
Pull Push

Local computer #1

Local computer #2 Local computer #3

Centralized VCS
REPOSITORY

WORKING
CLONE

Server

WORKING
CLONE

WORKING
CLONE

Update/
Pull

Push

Local Computer #1

Distributed VCS

FORKED
REPOSITORY

FORKED
REPOSITORY

FORKED
REPOSITORY

Pull
Push

Commit

Local computer #2 Local computer #3

What is GitHub?

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

6

GitHub is a web-based
platform used for version
control, collaboration, and
code repository management.
It allows developers to work
together on projects, track
changes, merge code, and
manage issues.

Key Components

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

7

Repositories in GitHub are where your project's
files and revision history are stored. They can be
public or private, and each repository contains
documentation, code, and related resources.

Issues in GitHub are used to track tasks,
enhancements, and bugs for your projects. They
facilitate communication among team members,
assign tasks, and prioritize work.

Repositories

Issues

Roles: Maintainer/Contributor

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

8

The Maintainer as the person
who is owner and in charge
of the main repository,
manage a project's direction
and improvement

The Contributor as the person who
is accessing or helping modify the
repository
Roles: Read, Triage, Write, Admin

9

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Prepare the project <Maintainer>

Creates an organization and a repository

10

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Prepare the project

<maintainer>

Update the readme file

Issues and collaborations <Maintainer>

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

11

Helps prevent developers from working on the same thing at the same time. Also, issue provides a place
for the community to propose and ideas, prioritize issues, size issues, clarify requirements, and verify
bugs

Creating and issue and then claiming it

Issues and collaborations

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

12

Create and assign an
issue to your Contributor

13

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Join to the project < Contributor >

Receives invitation to the company or project

Either
Find the invitation in
your email, view the
invitation, and accept
the invitation.
Or
Navigate to the team's
organization, view the
invitation, and accept
the invitation.

14

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Project tracker

Branch/TAG GRAPH COMMIT USER

Main/master Update on file Readme Maintainer

15

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Prepare to work on a project

Project
(Upstream)

<Contributor>

16

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Prepare to work on a project

Project
(Upstream)

Your fork
(Origin)Fork

File transfer

17

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Prepare to work on a project

Project
(Upstream)

Your fork
(Origin)

18

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Prepare to work on a project

Project
(Upstream)

Your fork
(Origin)

Your local
clone

Clone

19

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Prepare to work on a project

Project
(Upstream)

Your fork
(Origin)

Your local
clone

20

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Prepare to work on a project

Project
(Upstream)

Your fork
(Origin)

Your local
clone

21

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Activity! <Contributor>
Create new fork and clone the repo

22

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Activity!
<Contributor>

23

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Activity!
<Contributor>

Make sure you are in your fork’s
page

24

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Activity!
Clone your repo

Your local
clone

25

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Activity!
Clone your repo

Your local
clone

26

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Activity!
Clone your repo

Your local
clone

27

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Activity!
Verify Branches, upstream
remote

upstream

Branching Strategy

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

28

Branching allows developers to work on
features or fixes in isolation without affecting
the main codebase. It enables parallel
development, experimentation, and the
creation of feature branches.

• Creating descriptive branch names,
keeping branches short-lived

• merging changes frequently to avoid
conflicts

• Having a branching strategy that aligns
with the project's needs.

Best Practices

Check your assignment and Create a
branch

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

29

Create a branch

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

30

31

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Project tracker

Branch/TAG GRAPH COMMIT USER

Main/master Update on file Readme Maintainer

Issue #1 Contributor

Main Development

Development

Feature

Maintainer

32

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Contribute a change

Project
(Upstream)

Your fork
(Origin)

Your local
clone

33

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Contribute a change

Project
(Upstream)

Your fork
(Origin)

Your local
clone

Pu
sh

34

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Contribute a change

Project
(Upstream)

Your fork
(Origin)

Your local
clone

Pull request

35

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Activity! Work on your assigned issue

36

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Activity! Push your changes to origin
(Forked repo)

37

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Project tracker

Branch/TAG GRAPH COMMIT USER

Main/master Update on file Readme Maintainer

Issue #1 Contributor

Issue #1 ContributorResolution Issue #1

Main Development Feature

Development

Pull Requests

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

38

Pull requests are used to propose changes,
discuss modifications, and review code
before merging it into the main branch.
They allow for collaboration, feedback, and
ensuring code quality.

Purpose of Pull Requests

When creating a pull request,
developers provide context about the
changes, request reviews from team
members, run automated tests, and
ensure that the code meets the
project's standards before merging.

Creation Process

Collaboration
and Code
Review

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

39

GitHub facilitates collaboration by
providing tools for code review,
discussions, and pull request
comments. It fosters teamwork,
knowledge sharing, and error
detection through code reviews.

Facilitating Collaboration

Code reviews in GitHub involve team
members reviewing code changes,
providing feedback, suggesting
improvements, and ensuring code quality.
They play a vital role in maintaining code
consistency and quality standards.

Code Review Process

Activity! Create Pull Requests

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

40

Activity! Pull Requests

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Pull Requests

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

43

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Integrate a change

Project
(Upstream)

Your fork
(Origin)

Your local
clone

Merge

Pull Request

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

44

Looks good!

Maintainer reviews the PR

Accept the PR by merging it
into master: choose "squash
and merge" strategy for now
and click Merge pull
request and then Confirm.

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

45

Maintainer close the issue

46

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Project tracker

Branch/TAG GRAPH COMMIT USER

Main/master Update on file Readme Maintainer

Issue #1 Contributor

Issue #1 ContributorResolution Issue #1

Development Merge Pull Request #1 Maintainer

Main Development Feature

Work on issue #1

Branching Strategy

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

47

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

48

Let’s cleanup!
Stand on main branch and pull upstream

Delete feature branch and push the change to origin

Best Practice Description

Branch Protection Enable branch protection rules to prevent direct commits to critical
branches and ensure changes go through code review.

Continuous Integration Integrate CI tools to automatically test and build code changes,
ensuring the project's stability and quality.

Documentation Maintain detailed documentation in repositories to enhance project
accessibility, onboarding, and knowledge sharing.

Code Reviews Encourage regular code reviews to catch bugs early, share knowledge,
and maintain code quality standards.

Issue Tracking Effectively use GitHub issues to track tasks, bugs, and enhancements,
facilitating project management and collaboration.

Workflow Best Practices

49

50

G
it

H
u

b
 W

or
kf

lo
w

 B
as

ic
s

Additional Info

https://docs.github.com/en/pull-requests/collaborating-with-pull-
requests/proposing-changes-to-your-work-with-pull-requests/creating-and-deleting-
branches-within-your-repository

https://www.geeksforgeeks.org/version-control-systems/

https://www.geeksforgeeks.org/ultimate-guide-git-github/?ref=gcse_ind

https://www.gitkraken.com/learn/git/git-flow

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-and-deleting-branches-within-your-repository
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-and-deleting-branches-within-your-repository
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-and-deleting-branches-within-your-repository
https://www.geeksforgeeks.org/version-control-systems/
https://www.geeksforgeeks.org/ultimate-guide-git-github/?ref=gcse_ind
https://www.gitkraken.com/learn/git/git-flow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

